
Understanding Local Linearisation in
Variational Gaussian Process State Space Models

Talay M Cheema (tmc49@cam.ac.uk)

Motivation

I Many data can be well-described by dynamical systems
models, e.g. mechanistic differential equations (Figure 1).

I In application domains such as model based reinforcement
learning or synthetic biology, systems must be learnt from noisy
data.

I Where the task requires uncertainty estimates (e.g. active
learning), this invites a Bayesian approach.

I If the prior on the function is a Gaussian process, we have a
Gaussian process state space model (GPSSM). Previous
variational inference approaches either
I assume independence of dynamics f and states x, which

we show badly biases the process noise hyperparameter
Q , leading to poor predictions, and/or

I require parameters scaling with the number of latent states,
which is particularly limiting in continuous time, but
unecessary.

xt xt+1xt−1... ...

yt−1 yt yt+1

f

p(xt |xt−1, f) p(xt+1|xt , f)

p(yt−1|xt−1) p(yt |xt) p(yt+1|xt+1)

p(f)

Figure 1: Dynamical system factor graph. The states x are a Markovian intermediary
from the observations to f . Here p(xt |xt−1, f) = N(xt |f(xt−1),Q), p(yt |xt) = N(yt |Cxt ,R).

Inferring states (x) given dynamics (f)
If the transitions are linear Gaussian

q(xt+1|xt, f) = N(xt+1|ht(xt), Q̃t), ht(xt) = Atxt + bt (1)

then Kalman filtering/smoothing gives the exact posterior marginals p(xt |yt) efficiently.

For nonlinear f , any jointly Gaussian approximation q(x |f) implicitly has linear-Gaussian transitions
(Table 1), so is a local linearisation.

Table 1: Approximations for Kalman-like filter/smoothers. Et[·] =
∫
·q(xt = x)dx.

Method At bt Q̃t

Extended Kalman filter (EKF) ∂f
∂x

∣∣∣ µt f(µt) − Atµt Q

Statistical linearised filter (SLF) Et

[
∂f
∂x

]
Et[f(x)] − Atµt Q

Assumed density filter (ADF) 0 Et[f(x)] Covt[f(x)]

If q(x) is not jointly Gaussian, we would only be able to access samples from the marginals. For example, we
could use the particle filter.

Figure 2: (Left) q(f) from q(x) and (right) x filtered from p(f |v) for sampled v. Inducing points, predictive mean and confidence
region in red, x confidence intervals in black.

Inferring dynamics (f) given state (x) distributions
If x were known, we have input-output pairs for f ; inference is exact GP regression, which has an analytic
solution.

If we have x only in distribution, we have noisy input-output pairs. The standard approach is to introduce M
deterministic inputs z and corresponding outputs v ∼ q(v), then (z, v) stand in for input-output pairs for
regression. Then,

p(f |y) ≈ q(f) = q(f , v) = q(v)p(f |v) (2)

We can make q(v) Gaussian, and optimise it and z as variational parameters.

Existing methods are biased or memory intensive
The objective is

F =

∫
log p(y |x)dq(x) − DKL(q(v)||p(v)) −

∫ ∫
DKL(q(x |f)||p(x |f)) p(f |v , z)df q(v)dv ≤ p(y). (3)

Then the maximising process noise variance Q for T latent time points is

Qopt =
1
T

T∑
t=1

(Q̃t−1 + E[(ht−1(x) − f(x))(ht−1(x) − f(x))>]) (4)

which is biased larger wherever
I h⊥f (the mean-field approximation)
I or h cannot approximate the shape of f well (e.g. h is linear and we have very noisy observations).

Previous approaches mostly parameterise At, bt, Q̃t directly. But the optimal Gaussian filter is the SLF. An
optimal iterative Gaussian smoother can also be described.

These have no additional parameters (reduction from O(TD2) to O(M2D2) where the number of inducing
points M could be O(log T)).

Proposal: locally linearised GPSSM

The proposal is to construct q(x |f) = q(x |v) by sampling inducing points, then carrying out Kalman-like
smoothing using p(f |v).

Initial results are promising. An interesting extension would be to break the linearity constraint by using a
particle filter instead.

Figure 3: (Left) The fit for the mean field case. (Right) The fit for the proposed method, with q(x |f) constructed using statistically
linearised smoothing. Ground truth in blue, model fit in red. The faint blue dots show the observed pairs (yt , yt+1). The correlated
approach has much better calibrated posterior uncertainty.

