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Background

>

Goal: infer the dynamics function fpr or for given measurements y
(system identification)
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or dx; = fCT(Xt) dt + Lot dBy
yi = g(xt) + poi

Xt+5 = Ip1(Xt) + LpTki

» Many physical or biological systems are modelled in continuous time
(CT) as stochastic differential equations
» But Iearning .in CT Ce}n be hard (hlgh (.:omputa}tional cost, numerical » The latent state is x; € RP over time t R, measurements
errors), SO It Is tempting 1o model in discrete time (DT) {yl c RA}?:1 at some particu|ar times {{; ;7:1
> We model f ~ GP(m, k) and approximate the posterior p(fly), so we » Each x; ~ N(0, I) independently, each p; ~ N(0, R) independently,
can propagate me.anlngful .uncertalnty estimates for downstream and Bi IS standard D-dimensional Brownian motion
tasks, such as active learning
» |If we do this, there is a mismatch between the prior and model — we
investigate how problematic this is
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Figure 1: Prior samples from a GP (left) and corresponding latent trajectories from a DT and CT GPSSM.
Contrasting priors Contrasting learnt posteriors
» Compare prior samples from the DT and CT models in Figure 1 » To show this matters in the full learning problem, we fit data from a
» Trajectories from CT models do not cross over, but from DT models van der Pol oscillator (Figure 2)
they may » The approximate posterior for f and x are optimised with respect to
» In 1D, this means CT trajectories all converge to an equilibrium, the standard variational lower bound on the log marginal likelinood
whereas DT trajectories may have much more varied behaviour » In moderate observation noise (left hand panels) both models learn
» These types of differences disappear if fpr Is a diffeomorphism fairly well, though the CT model does slightly better
» But we do not know a good way of cosntructing diffeomorphic priors » |n high observation noise (right hand panels) both struggle, but the
without essentially creating a CT system! CT model is more robust
» If each co-ordinate of for depends on only a few elements of x, this » Note that the DT model ends up with a self-intersecting trajectory —
structure is generally lost when computing the equivalent DT which is not possible in CT
transition (harder to infer causal structures — this would persist even » Using the correct prior can be significant in challenging scenarios,
if for were a diffeomorphism) but if we could construct a diffeomorphic DT prior, that would be a
competetive alternative
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Figure 2: Learnt posteriors. Left: learnt transition functions as arrows, coloured according to standard deviation. The background shading is the RMSE
between the learnt and grountruth function. Right: latent mean trajectory. In both, the groundruth latent trajectory is faint and dashes, and the

measu

rements are blue dots.



