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Background

I Goal: infer the dynamics function fDT or fCT given measurements y
(system identification)

I Many physical or biological systems are modelled in continuous time
(CT) as stochastic differential equations

I But learning in CT can be hard (high computational cost, numerical
errors), so it is tempting to model in discrete time (DT)

I We model f ∼ GP(m, k ) and approximate the posterior p(f |y), so we
can propagate meaningful uncertainty estimates for downstream
tasks, such as active learning

I If we do this, there is a mismatch between the prior and model – we
investigate how problematic this is

xt+δ = fDT(xt) + LDTκt or dxt = fCT(xt) dt + LCT dβt

yi = g(xti) + ρi

I The latent state is xt ∈ R
D over time t ∈ R, measurements

{yi ∈ R
∆}ni=1 at some particular times {ti}ni=1

I Each κt ∼ N(0, I) independently, each ρi ∼ N(0,R) independently,
and βt is standard D-dimensional Brownian motion

Figure 1: Prior samples from a GP (left) and corresponding latent trajectories from a DT and CT GPSSM.

Contrasting priors
I Compare prior samples from the DT and CT models in Figure 1
I Trajectories from CT models do not cross over, but from DT models

they may
I In 1D, this means CT trajectories all converge to an equilibrium,

whereas DT trajectories may have much more varied behaviour
I These types of differences disappear if fDT is a diffeomorphism
I But we do not know a good way of cosntructing diffeomorphic priors

without essentially creating a CT system!
I If each co-ordinate of fCT depends on only a few elements of x, this

structure is generally lost when computing the equivalent DT
transition (harder to infer causal structures – this would persist even
if fDT were a diffeomorphism)

Contrasting learnt posteriors
I To show this matters in the full learning problem, we fit data from a

van der Pol oscillator (Figure 2)
I The approximate posterior for f and x are optimised with respect to

the standard variational lower bound on the log marginal likelihood
I In moderate observation noise (left hand panels) both models learn

fairly well, though the CT model does slightly better
I In high observation noise (right hand panels) both struggle, but the

CT model is more robust
I Note that the DT model ends up with a self-intersecting trajectory –

which is not possible in CT
I Using the correct prior can be significant in challenging scenarios,

but if we could construct a diffeomorphic DT prior, that would be a
competetive alternative

Figure 2: Learnt posteriors. Left: learnt transition functions as arrows, coloured according to standard deviation. The background shading is the RMSE
between the learnt and grountruth function. Right: latent mean trajectory. In both, the groundruth latent trajectory is faint and dashes, and the
measurements are blue dots.


