Federated Learning

Talay Cheema and Siddharth Swaroop

MLG reading group 11th March 2020

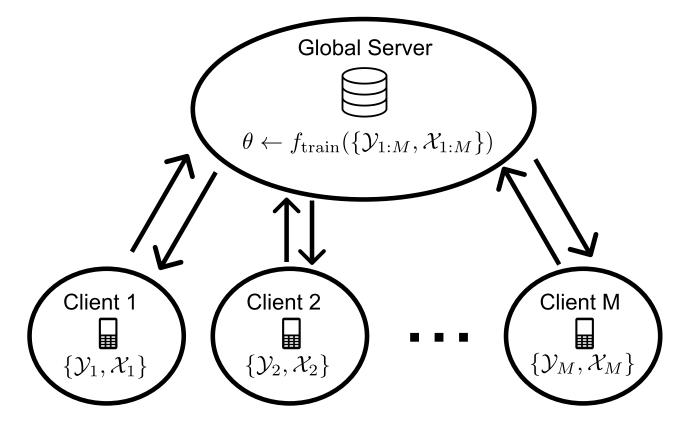
Why learn with distributed data?

- Data is often distributed across many devices / locations
 - User data on mobile phones
 - Large institutional databases e.g. medical records in hospitals
 - Not P2P
- Communication efficiency is important (big data, low power, low bandwidth)
- Privacy is important can we get away without asking for user data?

Talk Outline

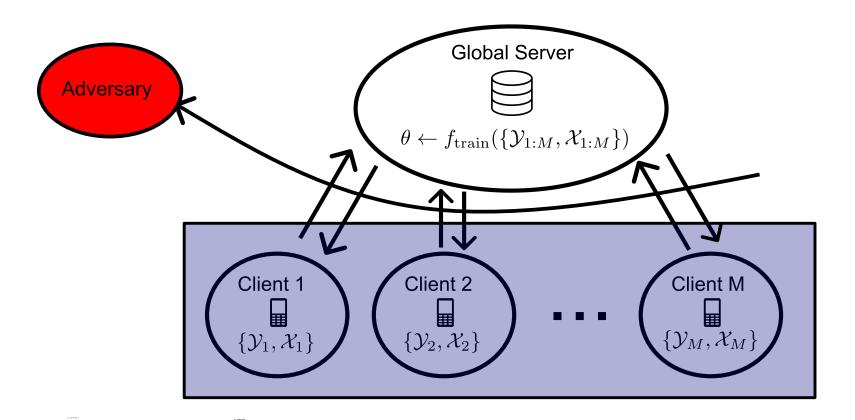
1. Motivations and background

- Threat models
- Homomorphic encryption
- Definition and core challenges
- 2. SGD-inspired approaches
 - Vanilla SGD
 - Federated Averaging
- 3. Bayesian federated learning
 - Partitioned Variational Inference
- 4. Improving security and privacy
 - Secure Multi-Party Computation
 - Differential Privacy

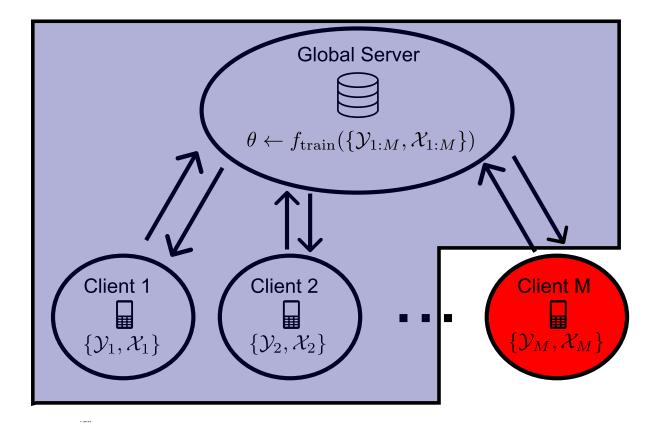


- Learn a global model with parameters θ efficiently, securely and fairly from private data
- We will make these terms more precise...

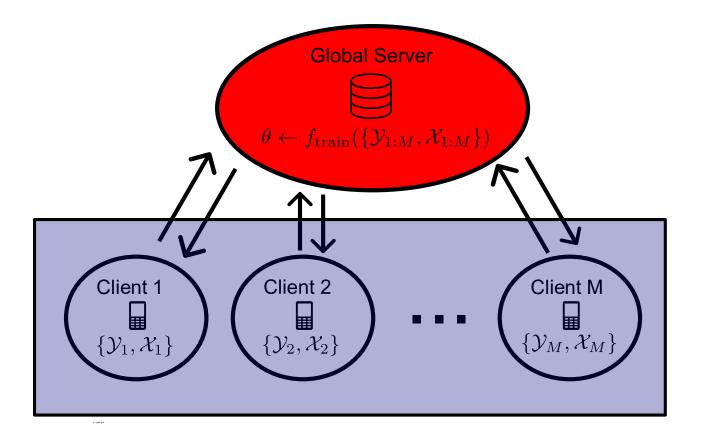
Threat 1 – eavesdropper



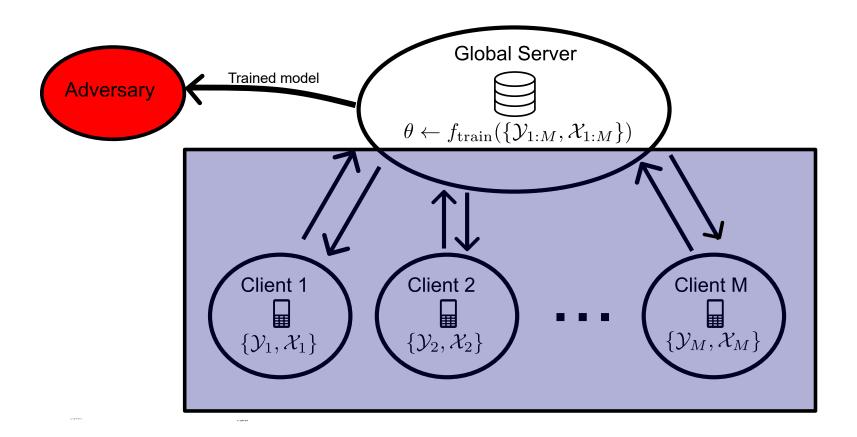
Threat 2 – an adversarial client



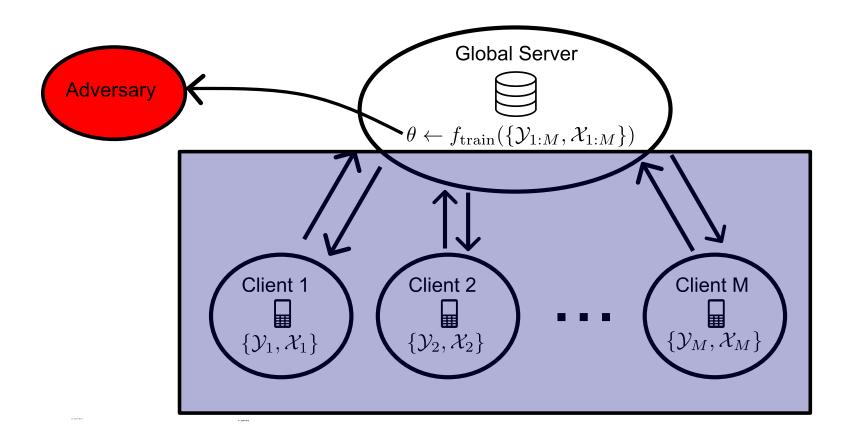
Threat 3 – a curious server

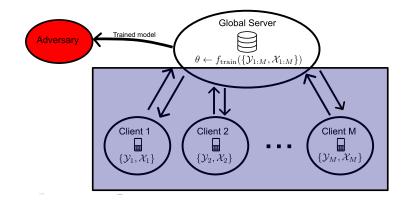


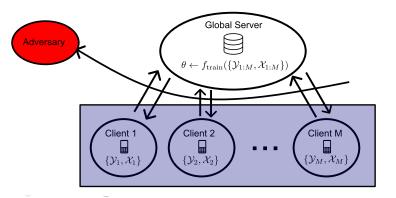
Threat 4.1 – an end user

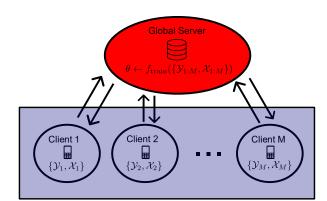


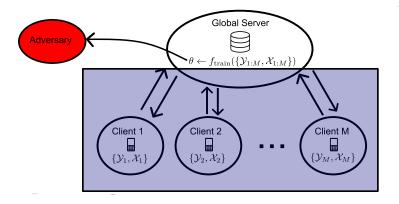
Threat 4.2 – training observations

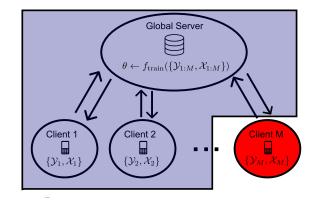












Ideas from cryptography

- Related secure computation problems have been studied since the 80s
- We could adapt the earliest attempt to our case with

 $f_{\text{train}} = \max(\theta^{(k-1)}, x)$

- One client with *q*-bit feature *x*
- Asymmetric cipher on *n*-bit integers:
 - server and client can encrypt with $E(\cdot)$
 - but only the server can decrypt with $D(\cdot)$
- Need to send $n + (2^{q} + 1)^{\frac{n}{2}} + 1$ bits, three rounds of communication

Homomorphic encryption

- How far can we get without letting the server decrypt?
- Rough sketch of protocol:
 - Clients encrypt features and send to server
 - Server runs training algorithm on ciphertext
 - Server sends model to clients
 - Clients decrypt model and return it to server
- This would guarantee security against:
 - T1 eavesdropper
 - T3 curious server
- But we need the ciphertext equivalent of plaintext operations...

Towards homomorphic encryption: ElGamal

- ElGamal is based on a cyclic group G of order q with generator g
- i.e. elements of G are $1, g, g^2, \dots, g^{q-1}$
- Public key: $(G, q, g, h = g^k)$ Private key: k
- Encryption function: draw a random r from $\{0:q-1\}$ and do $x \to (g^r, x \cdot h^r)$
- Decryption function: $g^{r^k} = h^r \operatorname{so} g^{r^{q-k}} = h^{-r}$. Hence do $(x \cdot h^r) \cdot (g^r)^{q-k} = x \cdot (h^r \cdot h^{-r}) = x$
- As long as *G* satisfies certain properties (Decisional Diffie Hellman assumption), it will be hard to get any information on *x* from the public key and ciphertext.

Towards homomorphic encryption: ElGamal

- ElGamal is based on a cyclic group G of order q with generator g
- i.e. elements of G are $1, g, g^2, \dots, g^{q-1}$
- Public key: $(G, q, g, h = g^k)$ Private key: k
- Encryption function: draw a random r from $\{0:q-1\}$ and do $x \to (g^r, x \cdot h^r)$

 $E(x_1) \cdot E(x_2) = (g^{r_1}, x_1 \cdot h^{r_1}) \cdot (g^{r_2}, x_2 \cdot h^{r_2}) = (g^{r_1 + r_2}, (x_1 \cdot x_2) \cdot h^{r_1 + r_2}) = E(x_1 \cdot x_2)$

- We can do additions or multiplications without decrypting, but not both ("partially homomorphic")
 - (And we need the same secrete key across clients)

Fully homomorphic encryption

- FHE exists with some limitations on accuracy
 - Need polynomial approximations to e.g. activation functions
- But it slows down computations substantially
 - Two days for binary classification by logistic regression (3 vs 8 MNIST)

Table 2 Running 10-fold cross-validation on compressed MNIST dataset with 1500 samples and 196 features

Training method	# iterations	Avg. training time		Avg. AUC (unencrypted)
$GD + \sigma_3$	10	48.76 h	0.974	0.977

Federated learning

"Federated learning is a machine learning setting where multiple entities (clients) collaborate in *solving a machine learning problem*, under the *coordination of a central server* or service provider. Each client's *raw data is stored locally* and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective."

Core Challenges

- Expensive communication
- Statistical heterogeneity (non-IID splits)
- Systems heterogeneity (clients dropping out)
- Privacy concerns

Objective

 $\min_w f(w)$

Conventional setup:

$$f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w), \qquad f_i(w) \text{ is e. g. loss on each datapoint}$$

Federated learning:

$$f(w) = \sum_{m=1}^{M} \frac{n_m}{n} F_m(w), \qquad F_m(w) \coloneqq \frac{1}{n_m} \sum_{i \in P_m} f_i(w)$$

Talk Outline

1. Motivations and background

- Threat models
- Homomorphic encryption
- Definition and core challenges

2. SGD-inspired approaches

- Vanilla SGD
- Federated Averaging
- 3. Bayesian federated learning
 - Partitioned Variational Inference
- 4. Improving security and privacy
 - Secure Multi-Party Computation
 - Differential Privacy

Vanilla SGD

At Global Server, iteration *i*:

Send $w^{(i)}$ to a client mReceive Δw_m from client $w^{(i+1)} \leftarrow w^{(i)} + \Delta w_m$

Core Challenges

- 1. Expensive communication
- 2. Statistical heterogeneity (non-IID splits)
- 3. Systems heterogeneity (clients dropping out)
- 4. Privacy concerns

- Not parallelised: slow
- Communication-inefficient

At client *m*:

Receive $w^{(i)}$ Return $\Delta w_m = -\eta \widehat{\nabla} \ell_m(w^{(i)})$

Parallelised SGD

At Global Server, iteration *i*:

Choose random subset of clients *C* Send $w^{(i)}$ to each client $\in C$ Receive Δw_m from each client $w^{(i+1)} \leftarrow w^{(i)} + \sum_{m \in C} \Delta w_m$

At client *m*:

Receive $w^{(i)}$ Return $\Delta w_m = -\eta \widehat{\nabla} \ell_m(w^{(i)})$

Core Challenges

- 1. Expensive communication
- 2. Statistical heterogeneity (non-IID splits)
- 3. Systems heterogeneity (clients dropping out)
- 4. Privacy concerns

- Parallelised
- Communication-inefficient

Federated Averaging

At Global Server, iteration *i*:

Choose random subset of clients CSend $w^{(i)}$ to each client $\in C$ Update w_m from each client $m \in C$ $w^{(i+1)} \leftarrow \sum_{m=1}^M \frac{n_m}{n} w_m$

At client *m*:

Receive $w \leftarrow w^{(i)}$

Over *E* epochs, split into minibatches:

$$w \leftarrow w - \eta \widehat{\nabla} \ell_m(w)$$

Return w

Core Challenges

- 1. Expensive communication
- 2. Statistical heterogeneity (non-IID splits)
- 3. Systems heterogeneity (clients dropping out)
- 4. Privacy concerns

- Parallelised
- Communication-efficient

McMahan et al., "Communication-Efficient Learning of Deep Networks from Decentralized Data," AISTATS 2017

Federated Averaging

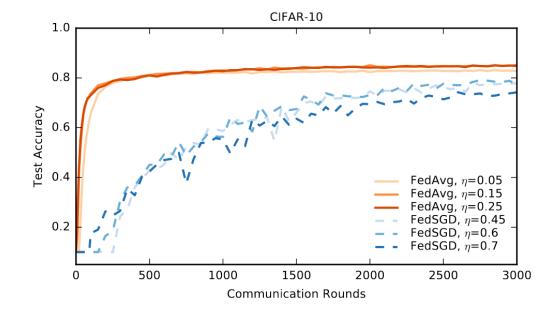


Figure 4: Test accuracy versus communication for the CI-FAR10 experiments. FedSGD uses a learning-rate decay of 0.9934 per round; FedAvg uses B = 50, learning-rate decay of 0.99 per round, and E = 5.

Core Challenges

- 1. Expensive communication
- 2. Statistical heterogeneity (non-IID splits)
- 3. Systems heterogeneity (clients dropping out)
- 4. Privacy concerns

Table 3: Number of rounds and speedup relative to baseline SGD to reach a target test-set accuracy on CIFAR10. SGD used a minibatch size of 100. FedSGD and FedAvg used C = 0.1, with FedAvg using E = 5 and B = 50.

Acc.	80%	82%	85%
SGD	18000 (—)	31000 (—)	99000 (—)
FedSGD	3750 (4.8×)	6600 (4.7×)	N/A (—)
FedAvg	280 (64.3×)	630 (49.2×)	2000 (49.5×)

Federated Averaging

At Global Server, iteration *i*:

Choose random subset of clients *C* Send $w^{(i)}$ to each client $\in C$ Update w_m from each client $m \in C$

$$w^{(i+1)} \leftarrow \sum_{m=1}^{M} \frac{n_m}{n} w_m$$

At client *m*:

Receive $w \leftarrow w^{(i)}$

Over *E* epochs, split into minibatches:

$$w \leftarrow w - \eta \widehat{\nabla} \ell_m(w)$$

Return w

Core Challenges

- 1. Expensive communication
- 2. Statistical heterogeneity (non-IID splits)
- 3. Systems heterogeneity (clients dropping out)
- 4. Privacy concerns
- Hyperparameter tuning required
- No convergence guarantees
 - Can diverge (non-IID)!
- Compression of messages possible (Konečný et al., 2017)
- Deployed at scale! (Bonawitz et al., 2019)

McMahan et al., "Communication-Efficient Learning of Deep Networks from Decentralized Data," *AISTATS* 2017 Konečný et al., "Federated Learning: Strategies for Improving Communication Efficiency", 2017 Bonawitz et al., "Towards Federated Learning at Scale: System Design", *SysML* 2019

Talk Outline

1. Motivations and background

- Threat models
- Homomorphic encryption
- Definition and core challenges
- 2. SGD-inspired approaches
 - Vanilla SGD
 - Federated Averaging

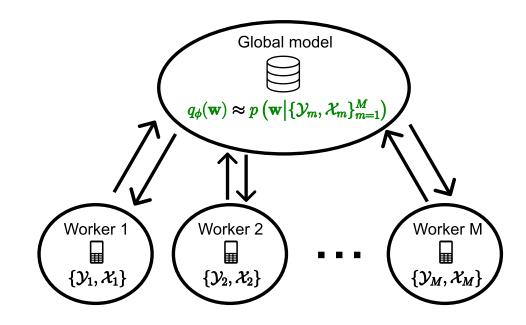
3. Bayesian federated learning

- Partitioned Variational Inference
- 4. Improving security and privacy
 - Secure Multi-Party Computation
 - Differential Privacy

Bayesian FL

Core Challenges

- 1. Expensive communication
- 2. Statistical heterogeneity (non-IID splits)
- 3. Systems heterogeneity (clients dropping out)
- 4. Privacy concerns

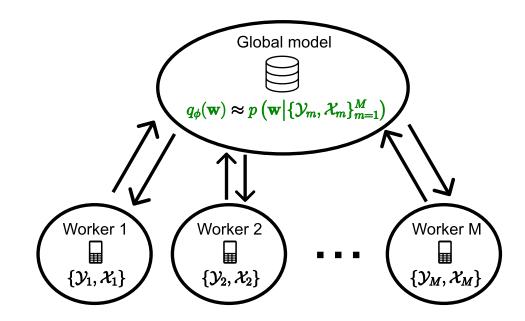


Bayesian FL

- SGD \leftrightarrow Global VI
- Variational methods
 - Stochastic natural-gradient EP
 - Partitioned VI
 - Store client states locally

Core Challenges

- 1. Expensive communication
- 2. Statistical heterogeneity (non-IID splits)
- 3. Systems heterogeneity (clients dropping out)
- 4. Privacy concerns

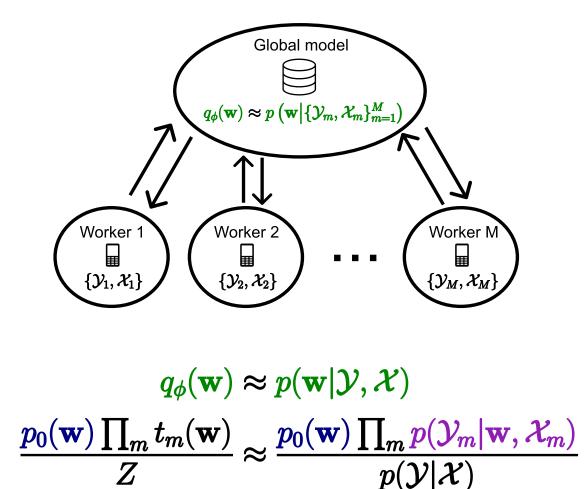


- Bayesian Committee Machine
 - Communicate once

Hasenclever et al., "Distributed Bayesian Learning with Stochastic Natural Gradient Expectation Propagation and the Posterior Server," *JMLR* 2017 Bui et al., "Partitioned Variational Inference: A unified framework encompassing federated and continual learning," 2018 Tresp, "A Bayesian committee machine," *Neural computation* 2000

Core Challenges

- 1. Expensive communication
- 2. Statistical heterogeneity (non-IID splits)
- 3. Systems heterogeneity (clients dropping out)
- 4. Privacy concerns

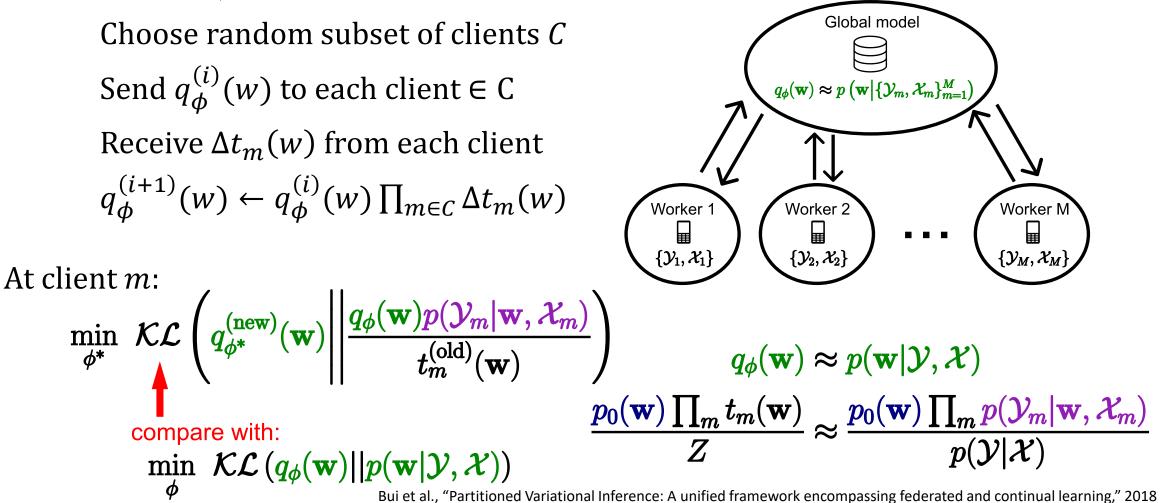


Bui et al., "Partitioned Variational Inference: A unified framework encompassing federated and continual learning," 2018

At Global server, iteration *i*:

Core Challenges

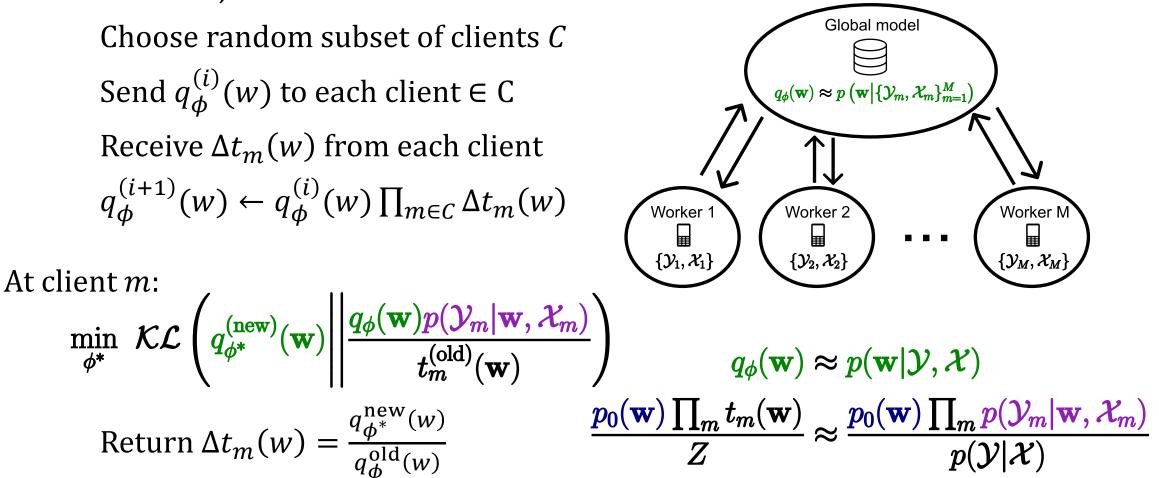
- 1. Expensive communication
- 2. Statistical heterogeneity (non-IID splits)
- 3. Systems heterogeneity (clients dropping out)
- 4. Privacy concerns



At Global server, iteration *i*:

Core Challenges

- 1. Expensive communication
- 2. Statistical heterogeneity (non-IID splits)
- 3. Systems heterogeneity (clients dropping out)
- 4. Privacy concerns



Bui et al., "Partitioned Variational Inference: A unified framework encompassing federated and continual learning," 2018

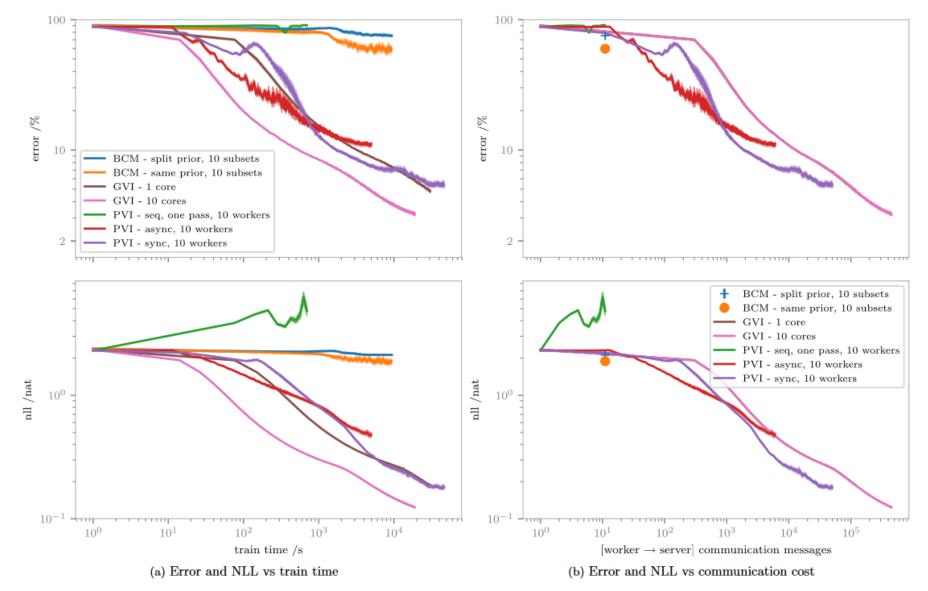


Figure 5: Performance on the test set in the federated MNIST experiment with a non-iid distribution of training points across ten workers, i.e. each worker has access to digits of only one class.

Bui et al., "Partitioned Variational Inference: A unified framework encompassing federated and continual learning," 2018

Talk Outline

- 1. Motivations and background
 - Threat models
 - Homomorphic encryption
 - Definition and core challenges
- 2. SGD-inspired approaches
 - Vanilla SGD
 - Federated Averaging
- 3. Bayesian federated learning
 - Partitioned Variational Inference
- 4. Improving security and privacy
 - Secure Multi-Party Computation
 - Differential Privacy

Secure Multi-Party Computation

- "Parties jointly compute a function over inputs while keeping those inputs secure"
 - Homomorphic Encryption
 - Secure Aggregation
- Adds communication rounds & computational cost

Secure Multi-Party Computation

- "Parties jointly compute a function over inputs while keeping those inputs secure"
 - Homomorphic Encryption
 - Secure Aggregation
- Adds communication rounds & computational cost

Secure Aggregation

- Combines cryptographic techniques
 - Secret sharing, key agreement, authenticated encryption, signature scheme, public key infrastructure, ...
- Protects against honest-but-curious server, adversarial server
- (Up to) 4 rounds of communication
- Cubic computational cost for server, quadratic for clients

Differential Privacy

Definition 2. A randomized function \mathcal{K} gives ϵ -differential privacy if for all data sets D_1 and D_2 differing on at most one element, and all $S \subseteq Range(\mathcal{K})$,

$$\Pr[\mathcal{K}(D_1) \in S] \le \exp(\epsilon) \times \Pr[\mathcal{K}(D_2) \in S] \quad (+\delta)$$
 (1)

• "Learn as much as possible from a group while learning as little as possible about any individual in it"

Differential Privacy

Definition 2. A randomized function \mathcal{K} gives ϵ -differential privacy if for all data sets D_1 and D_2 differing on at most one element, and all $S \subseteq Range(\mathcal{K})$,

$$\Pr[\mathcal{K}(D_1) \in S] \le \exp(\epsilon) \times \Pr[\mathcal{K}(D_2) \in S] \quad (+\delta)$$
(1)

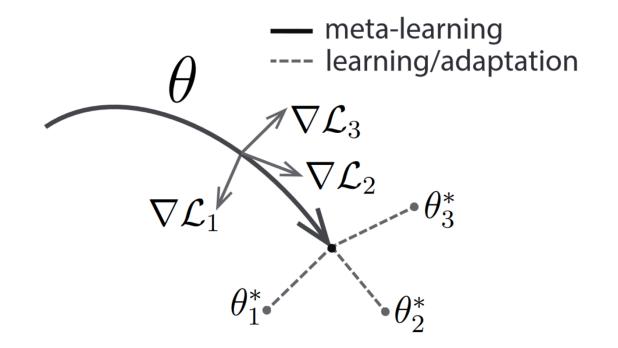
- "Learn as much as possible from a group while learning as little as possible about any individual in it"
- Achieved by adding (Gaussian) noise
- Global vs Local vs Hybrid
- Combining with Secure MPC

Meta-learning and Federated learning

- Key assumption so far: learning a *single global model*
- What if *personalised local models* are better?

Meta-learning and Federated learning

- Key assumption so far: learning a *single global model*
- What if *personalised local models* are better?
- Locally fine-tune: cf MAML



Finn et al., "Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks," ICML 2017

Future work

Core Challenges

- 1. Expensive communication
- 2. Statistical heterogeneity (non-IID splits)
- 3. Systems heterogeneity (clients dropping out)
- 4. Privacy concerns

- Designing algorithms that tackle **all** core challenges
- Modelling systems heterogeneity

- Communication-accuracy Pareto frontier
- Beyond supervised learning

• Differential Privacy for FL

• Benchmarks

Talk Outline

- 1. Motivations and background
 - Threat models
 - Homomorphic encryption
 - Definition and core challenges
- 2. SGD-inspired approaches
 - Vanilla SGD
 - Federated Averaging
- 3. Bayesian federated learning
 - Partitioned Variational Inference
- 4. Improving security and privacy
 - Secure Multi-Party Computation
 - Differential Privacy