

#### **Differential Privacy**

Talay M Cheema<sup>1</sup> and Ferenc Huszár<sup>2</sup>

<sup>1</sup>Department of Engineering, University of Cambridge
<sup>2</sup>Department of Computer Science and Technology, University of Cambridge

MLG reading group

9 March 2022



Differential Privacy in general Motivation and definitions The Laplace and exponential mechanisms  $\delta$ -approximate DP and the Gaussian mechanism Zero-concentrated DP

Differential privacy in machine learning DP-SGD DP and generalisation





#### Privacy is subjectively important



# Why bother?

- Privacy is subjectively important
- Naive approaches are inadequate
  - Anonymisation foiled by using side-information
  - Large queries allow differencing attacks
  - Benign facts may not be benign...
  - Query auditing is hard, and non-answers are informative



# Why bother?

- Privacy is subjectively important
- Naive approaches are inadequate
  - Anonymisation foiled by using side-information
  - Large queries allow differencing attacks
  - Benign facts may not be benign...
  - Query auditing is hard, and non-answers are informative
- Computational security and federated learning do different, complementary things



#### The setup

Users interact with a *trusted curator* of a database.

- ► Consider two databases x and x' which differ in one entry x includes your data, x' doesn't.
- Users ask for some f to be computed on the database e.g., number of PhD students in CBL; average age of students in CBL.
- The curator uses a noisy function  $\phi$  instead.



#### The setup

Users interact with a *trusted curator* of a database.

- ► Consider two databases x and x' which differ in one entry x includes your data, x' doesn't.
- Users ask for some f to be computed on the database e.g., number of PhD students in CBL; average age of students in CBL.
- The curator uses a noisy function  $\phi$  instead.

Your participation in the database should bring you no disadvantage



# Privacy loss as a random variable

#### Privacy loss

If  $\phi(x) \sim P, \phi(x') \sim P'$ , then let the privacy loss be

$$\lambda(x||x') = \log rac{P(r)}{P'(r)}, \qquad r \sim P.$$



### Privacy loss as a random variable

#### Privacy loss

If  $\phi(x) \sim P, \phi(x') \sim P'$ , then let the privacy loss be

$$\lambda(x||x') = \log rac{P(r)}{P'(r)}, \qquad r \sim P(r)$$

- This is a worst case assessment an adversary may need a lot of side information to gain this much information.



### $\varepsilon$ differential privacy

#### Strict differential privacy

# A function $\phi$ is $\varepsilon$ differentially private if for *every* adjacent pair x, x' $Pr[\lambda(x||x') \le \varepsilon] = 1$



### Reflections

- Contrast with cryptographic methods any user may be an adversary
- Contrast with information theory worst case analysis rather than averages
- Privacy is guaranteed for *individuals* privacy for arbitrary groups precludes learning





#### Differential Privacy in general

Motivation and definitions

#### The Laplace and exponential mechanisms

 $\delta$ -approximate DP and the Gaussian mechanism Zero-concentrated DP

Differential privacy in machine learning DP-SGD DP and generalisation



$$\phi(\mathbf{x}) = f(\mathbf{x}) + \nu$$

A few issues...

What if underestimates are much worse than overestimates?



$$\phi(\mathbf{x}) = f(\mathbf{x}) + \nu$$

A few issues...

- What if underestimates are much worse than overestimates?
- If  $\nu$  has scale 1, but f(x) f(x') = 1000...



$$\phi(\mathbf{x}) = f(\mathbf{x}) + \nu$$

A few issues...

- What if underestimates are much worse than overestimates?
- If  $\nu$  has scale 1, but f(x) f(x') = 1000...

#### Sensitivity

The  $\ell_p$  sensitivity of a function *f* is

$$\Delta_{\rho}f = \sup_{x,x' ext{adjacent}} ||f(x) - f(x')||_{
ho}$$



# The Laplace mechanism

The Laplace mechanism is  $\varepsilon$ -DP.

$$\phi(\mathbf{x}) = f(\mathbf{x}) + \nu, \qquad \nu \sim \mathsf{Lap}\left(\frac{\Delta_1 f}{\varepsilon}\right)$$



# The Laplace mechanism

The Laplace mechanism is  $\varepsilon$ -DP.

$$\phi(\mathbf{x}) = f(\mathbf{x}) + \nu,$$

$$\nu \sim \mathsf{Lap}\left(\frac{\Delta_1 f}{\varepsilon}\right)$$

*Proof.*  $P(r) \propto \exp(-rac{\varepsilon ||f(x)-r||_1}{\Delta_1 f})$ 



# The Laplace mechanism

The Laplace mechanism is  $\varepsilon$ -DP.

$$\phi(\mathbf{x}) = f(\mathbf{x}) + 
u, \qquad 
u \sim \mathsf{Lap}\left(rac{\Delta_1 f}{arepsilon}
ight)$$

*Proof.*  $P(r) \propto \exp(-rac{\varepsilon ||f(x)-r||_1}{\Delta_1 f})$ 

$$\lambda(x||x') = \log \frac{P(r)}{P'(r)} = \frac{\varepsilon ||f(x') - r||_1}{\Delta_1 f} - \frac{\varepsilon ||f(x) - r||_1}{\Delta_1 f}$$
$$\leq \frac{\varepsilon ||f(x') - f(x)||_1}{\Delta_1 f}$$
$$\leq \varepsilon$$



- number of PhD students in CBL  $\Delta_1 f = ?$
- average age of students in CBL  $\Delta_1 f \approx$ ?



- number of PhD students in CBL  $\Delta_1 f = 1$
- average age of students in CBL  $\Delta_1 f \approx$ ?



- number of PhD students in CBL  $\Delta_1 f = 1$
- average age of students in CBL  $\Delta_1 f \approx a_{max}/n$



- number of PhD students in  $CBL \Delta_1 f = 1$
- average age of students in CBL  $\Delta_1 f \approx a_{max}/n$
- Accuracy is compromised if noise is high...



- number of PhD students in CBL  $\Delta_1 f = 1$
- average age of students in CBL  $\Delta_1 f \approx a_{max}/n$
- Accuracy is compromised if noise is high...

#### The exponential mechanism

Let the utility of f(x) = r be u(x, r). Then for  $\varepsilon$ -DP, output r with distribution

$$p(r) \propto \exp\left(\frac{\varepsilon u(x,r)}{2 \max_r \Delta_1 u(\cdot,r)}\right)$$

This has strong utility guarantees, and the Laplace mechanism is a special case.





#### Differential Privacy in general

Motivation and definitions The Laplace and exponential mechanisms  $\delta$ -approximate DP and the Gaussian mechanism Zero-concentrated DP

Differential privacy in machine learning DP-SGD DP and generalisation





The total privacy loss of  $k \in DP$  functions is  $k \in$ . To do better we need a relaxation.





The total privacy loss of  $k \in DP$  functions is  $k \in$ . To do better we need a relaxation.

 $\delta$ -approximate differential privacy

A function  $\phi$  is  $\delta$ -approximately  $\varepsilon$  differentially private (or  $(\varepsilon, \delta)$ -DP) if for *every* adjacent pair x, x'

 $\Pr[\lambda(\boldsymbol{x}||\boldsymbol{x}') \leq \varepsilon] \geq 1 - \delta$ 

A reasonable worst case privacy loss.



### Advanced composition

#### The advanced composition theorem

For any  $\delta'$ , the composition of k ( $\varepsilon$ ,  $\delta$ )-DP mechanisms is ( $\varepsilon'$ ,  $k\delta + \delta'$ )-DP with

$$arepsilon' = arepsilon \sqrt{2k\log rac{1}{\delta'}} + rac{1}{2}karepsilon^2$$

 $\varepsilon' \approx \sqrt{k}\varepsilon$  for  $k \ll \varepsilon^2$  if we allow a moderate leakage  $\delta'$ .



# The Gaussian mechanism

#### Gaussian mechanism version 1

For any 
$$\varepsilon \in (0, 1), \delta > 0, c^2 = 2 \log \frac{1.25}{\delta}$$
, for  $(\varepsilon, \delta)$ -DP

$$\phi(x) = f(x) + \nu$$
  $\nu \sim \mathcal{N}(0, \sigma^2)$   $\sigma = \frac{c\Delta_2 t}{c}$ 

#### Gaussian mechanism version 2

For any 
$$\varepsilon > 0, \delta \in (0, 0.5), c^2 = 2 \log \frac{2}{\sqrt{16\delta + 1} - 1}$$
, for  $(\varepsilon, \delta)$ -DP  
 $\phi(x) = f(x) + \nu \qquad \nu \sim \mathcal{N}(0, \sigma^2) \qquad \sigma = \frac{(c + \sqrt{c^2 + \varepsilon})\Delta_2 f}{\varepsilon\sqrt{2}}$ 





#### Differential Privacy in general

Motivation and definitions The Laplace and exponential mechanisms  $\delta$ -approximate DP and the Gaussian mechanism Zero-concentrated DP

Differential privacy in machine learning DP-SGD DP and generalisation



### Towards a relaxation

#### Rényi divergence

The divergence of order  $\alpha \in (1,\infty)$  is

$$D_{\alpha}(P||P') = \frac{1}{\alpha - 1} \log \int \left(\frac{P(r)}{P'(r)}\right) dP(r)$$
$$= \frac{1}{\alpha - 1} \log \mathbb{E}[e^{(\alpha - 1)\lambda(x||x')}]$$

- $\blacktriangleright D_1(P||P') = D_{\mathcal{KL}}(P||P') = \mathbb{E}[\lambda(x||x')]$
- $D_{\infty}(P||P') = \sup_{r} \lambda(x||x')$
- $D_{\alpha}(P||P')$  is increasing in  $\alpha$



Strict  $\varepsilon$ -DP:  $D_{\infty}(P||P') \leq \varepsilon$  for every x, x' adjacent.

Strict  $\varepsilon$ -DP:  $D_{\infty}(P||P') \leq \varepsilon$  for every x, x' adjacent.

Zero concentrated DP

 $\phi$  is  $(\xi, \rho)$ -zCDP if for every adjacent x, x', and every  $\alpha \in (1, \infty)$ 

 $D_{\alpha}(\boldsymbol{P}||\boldsymbol{P}') \leq \xi + \rho\alpha$ 

• Clearly,  $(\varepsilon, 0)$ -zCDP  $\iff \varepsilon$ -DP

Strict  $\varepsilon$ -DP:  $D_{\infty}(P||P') \leq \varepsilon$  for every x, x' adjacent.

Zero concentrated DP

 $\phi$  is  $(\xi, \rho)$ -zCDP if for every adjacent x, x', and every  $\alpha \in (1, \infty)$ 

 $D_{\alpha}(\boldsymbol{P}||\boldsymbol{P}') \leq \xi + \rho\alpha$ 

- Clearly,  $(\varepsilon, 0)$ -zCDP  $\iff \varepsilon$ -DP
- ► More generally, zCDP characterises the decay of λ
- There are conversions between the two forms
- zCDP yields nice analyses of the Gaussian mechanism and group privacy



#### Differential Privacy in general Motivation and definitions The Laplace and exponential mechanisms $\delta$ -approximate DP and the Gaussian mechanism Zero-concentrated DP

#### Differential privacy in machine learning

DP-SGD DP and generalisation

