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Abstract

We describe variational inference approaches in
Gaussian process state space models in terms of
local linearisations of the approximate posterior
function. Most previous approaches have either
assumed independence between the posterior dy-
namics and latent states (the mean-field (MF) ap-
proximation), or optimised free parameters for
both, leading to limited scalability. We use our
framework to prove that (i) there is a theoretical
imperative to use non-MF approaches, to avoid
excessive bias in the process noise hyperparam-
eter estimate, and (ii) we can parameterise only
the posterior dynamics without any less of perfor-
mance. Our approach suggests further approxima-
tions, based on the existing rich literature on fil-
tering and smoothing for nonlinear systems, and
unifies approaches for discrete and continuous
time models.

1. Introduction

Much time series data of engineering or scientific interest
can be well-described by dynamical systems models; in par-
ticular, many physical and biological systems are described
by mechanistic differential equation models. For tasks such
as predictive control or experiment design, good quality
uncertainty estimates over the dynamics or predictions are
needed, which suggests a Bayesian approach.

Where the system dynamics are fairly well known, there
exists a wealth of methods for predictions with uncertainty.
However, in some important application domains, such as
model based reinforcement learning or synthetic biology,
the system dynamics are not well determined a priori and
must be determined from noisy measurements. Using Gaus-
sian process (GP) priors for the dynamics provides a non-
parametric approach which can give meaningful uncertainty
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estimates in the low data regime, yet scale up as we make
collect further measurements.

There are two major classes of dynamical models: autore-
gressive (AR) models, which model transitions directly in
the space of observations, and state space models (SSMs),
which model transitions in a latent space. We focus on
GPSSMs since they offer advantages in the common cases
of partial observations and redundant (i.e. high dimensional)
measurements.

Most work for deterministic approximate inference in
GPSSMs in the past has enforced models in discrete time
with factorised variational distributions, and has the number
of parameters scaling with the length of the time series. In
this work we give a common treatment to both continuous
and discrete time cases. We show that there is a theoretical
imperative to use correlated variational distributions, echo-
ing the empirical evidence of (Ialongo et al., 2019), but we
show the free parameters of that model are superfluous. We
propose a family of methods inspired by a relaxation of the
optimal method (in the sense of the variational objective),
which we categorise by their implicit linearisation of the
approximate posterior function.

The rest of the paper is organised as follows. In Section 2,
we review relevant background material on GPSSMs, the fil-
tering and smoothing theory, and related work. In Section 3
we detail the theoretical results and the inference methods
which follow. We give an initial experimental investigation
of these methods in Section 4.

2. Background

2.1. State space models

We consider principally discrete time state space models of
the following form

Tir1 = f(@e, ue) + ke
ye = g(@e) + p
ke ~ N(0,Q),pe ~ N (0, R)zo ~ N (10, o)

with the continuous time analogue for the latents

d:rt = f([l?t, ut)dt + d,@t
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where [ is Brownian motion with diffusion matrix (), and
the rest of the model is unchanged from the discrete time
case. We seek to model the functions f and g, with each
x; € RPy € R®, uy € RP=. We have observations for
Yi,,% € {1 : T}; x is not observed, and u is a sequence of
deterministic control inputs. We hereafter suppress refer-
ence to u in the text without loss of generality.

Autoregressive models (in discrete time) assume that the
states are observed directly, and may allow f to depend on
multiple preceding states. However, we are often in the
regime of partial observations (A < D), for which we may
need many preceding states to form a good prediction, or
in the regime of redundant measurements (A >> D). In
either case, autoregressive models’ transition functions will
tend to require much higher dimensional input spaces than
state space models.

2.2. Filtering and smoothing

In the special case where f and g are both affine, the exact
state posterior is Guass-Markov distributed, and can be effi-
ciently calculated using the Kalman filter (states given cur-
rent and preceding measurements) or Kalman smoother (full
state posterior). The linear transition and emission functions
can be estimated in a maximum likelihood or maximum a
posteriori fashion using the expectation maximisation (EM)
algorithm.

In the general nonlinear case, the exact posterior is no longer
Gaussian. Kalman filter extensions are a popular family
of methods for nonlinear state estimation which use the
Kalman filter/smoother on an approximate time-varying
linear system constructed by explicitly linearising the dy-
namics. Some examples are given in Table 1 along with
the moment matching (MM) or assumed density filtering
(ADF) approximation; see (Sarkkd, 2013; Sarkkd & Solin,
2019) for further details. Approximate EM methods can be
extended to this case (Ghahramani & Roweis, 1999).

Table 1. Approximations for Kalman-like filter/smoothers. Abbre-
viations: EKF — Extended Kalman Filter, SLF — Statistically Lin-
earised Filter, ADF — Assumed Density Filter, E;[-] = [ -q(z: =
z)dz.

METHOD A by Q:
EKF %| Lt flue) — Avpae Q
SLF E¢ [%] E¢[f(x)] — Aepue Q
ADF 0 E¢[f(z)] Cov.[f(z)]

2.3. Bayesian non-parametrics

In some applications, we require uncertainty estimates for
downstream tasks, and gather data incrementally, such as in
active learning or model-based reinforcement learning. Plac-

ing a Gaussian process prior on f and carrying out Bayesian
inference fulfills the desiderata of these applications, insofar
as the model complexity scales with the size of the dataset.

In this case, to avoid difficulties with non-identifiability,
we enforce linear measurements, g(z) = Cz. We lose no
generality in the sense that any nonlinearity in g can be
transferred to f in exchange for a possible increase in D
(Frigola-Alcalde, 2014). To be precise, usually f is chosen
to have a prior independent across output dimensions, i.e.

D
(D) = [Ip(fa)  p(Fa) = GP(ma(), kal-,)
d=1

where my : RP? — Rand kg : RP x RP — R are the mean
and covariance function of the dth GP.

2.4. Variational approximations

Variational approximations for Gaussian processes often
rely on a pseudo-point approximation, in which we intro-

duce inducing inputs z € R and corresponding inducing

outputs v € R (Titsias, 2009). We treat the z as determin-
istic variational parameters, and include v in our variational
distribution. Conceptually, the pair (z, v) stand in for input-
output pairs of the GP, allowing us to reframe approximate
inference as surrogate GP regression on the inducing points.
This is particularly important when the inputs are latent
variables (Damianou et al., 2016), which includes our case.
The variational approximation for f is constructed from the
inducing outputs using the prior conditional:

q(f) = q(f,v) = q(v)p(f]v)

where the first equality follows since v = f(z) is a finite
index subset of f.

The earliest Bayesian treatments of GPSSMs used compu-
tationally intensive Markov chain Monte Carlo (MCMC)
schemes (Frigola-Alcalde, 2014). In order to avoid this,
subsequent efforts have focused on deterministic approxi-
mations, principally variational inference (VI), within which
the objective function for training is

_ Py, z, f)
F= / ale f)log 21w

- / 4(z) log p(y|z)dz — Dicr (a(z, f)p(x, £)) < log p(yle)

with equality iff D1, (q(z, f)||p(x, f)) = 0, where D, is
the KL divergence. We maximise the variational objective
with respect to the hyperparameters and the parameters
of the variational distribution, and each upward step does
some combination of (1) increasing the likelihood of the
hyperparameters and (2) bringing the approximate posterior
closer to the true posterior. See (Bui, 2017) for an alternative
treatment by power expectation propagation.

Since computation of the exact posterior is intractable, we
limit g to an approximating family which is computationally
convenient; however, this comes at a cost: the maximum
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Figure 1. Schematic representation of the two methods. (Left) MF approach, where q(f) has been set optimally according to q(z). (Right)
Locally linearised approach, where ¢(z|f) has been generated from some samples of v according to a statistically linearised filter. In red
is the mean of ¢( f) with one standard deviation uncertainty shaded; red dots and error bars depict inducing outputs. In black are the pairs
(w5 pe+1) from g(z| f), with arrows showing one standard deviation either side in the directions of the eigenvectors. In the MF case, g( f)
is approximately passes through the points, aligned with one principal direction, and we have 7" means and covariances to optimise. In the
linearised case, the principal directions are set according to the function, and we have M inducing outputs to optimise.

of the objective may be biased away from the maximum of
the likelihood. This bias has been shown to be particularly
severe when strong correlations present in the true posterior
which are enforced absent in the approximation (Turner &
Sahani, 2011). We will now consider this in more detail.

3. Theoretical results and proposed method

3.1. Optimal process noise

Most of the previous work on GPSSMs has used the MF
assumption; that is, that the states and dynamics are uncor-
related in the variational distribution.

q(z, f) = q(x)q(f) = q(z)q(v)p(f|v)

If we take g(x) to be Gauss-Markov, then ¢(v) is optimally
Gaussian and available in closed form (Frigola-Alcalde,
2014). However, it is clear from the prior that correlations
between x and f are significant (z is generated by f). Re-
cent applications of correlated approximations (Doerr et al.,
2018; Ialongo et al., 2019) have shown empirically that the
effect is signicant. We now show this from the effect on the
process noise hyperparameter.

Consider the general Gauss-Markov approximations
q(zes1|ze, f) = N (s [P f](2e), Qe [£])
or dxy = he[f)(ze)dt + dB

where B is Brownian motion with diffusion matrix Q, hy is

an affine function of « which depends on ¢ and f, and Qq is
a positive definite matrix which depends on ¢ and f.

F= / log p(ylz)da(z) — Dicr. (a(v]2)|1p(v]2))

[ [

Since () appears only in the middle term, we optimise to get
in the discrete time case

o)|lp(x|£)) p(flv, 2)df q(v)dv

“Yelf

TZ Qe-1+E[(he1[f)(2) = f (@) (he—1 [f)(2)~ f () T])

where the expectation is over ¢(z, f). In continuous time
we get an analagous integral in place of the sum.

The first term is the average process noise of the variational
approximation; relative to this the process noise is biased
larger by the approximation error covariance of the lineari-
sation. The residual contribution of F,|; when @ is set
optimally is —1 (3, log |Q| — T'log |Q|), thus this term
pushes h to approximate f. On the other hand, the obser-
vation term pushes h to yield states which are close to the
observations. Thus this extra term allows the approximate
the process noise to grow to absorb error due to model mis-
match, which can be desirable for behaviour far from the
prior (e.g., much faster than the dynamics of interest), or to
allow flexibility during training.

Clearly, in the MF case, where h has no dependence on f,
the error term will be larger in general, leading to inflated
process noise, as seen empirically in (Ialongo et al., 2019)
(though note there, h is also nonlinear, which gives more
flexibility, but ¢(x) is no longer Gaussian, and must be
sampled also).

Constructing a meaningful linearisation with full depen-
dence on f is not straightforward, so we settle for depen-
dence only on the inducing outputs v.

3.2. Optimal smoothing

Most previous approaches have required full parameterisa-
tion of ¢(z|f) (O(T'D?) parameters), although (Eleftheri-
adis et al., 2017) mitigated this by using a bi-directional
RNN recognition network in the MF case. We now show
that there is a more natural, non-parametric way to amortise
inference in the correlated case.

We can see from the results of (Archambeau et al., 2007,
Duncker et al., 2019) that 7, = [ F,;p(f|v)df can be
maximised by an iterative smoothing algorithm for any v.
We can mimic this result for the discrete time case as follows.
Augment the variational objective for each v with Lagrange
terms to enforce the marginals and transition parameters are



Understanding Local Linearisation in Variational GPSSMs

Figure 2. Results from the kink experiment. (Left) The fit for the MF case. (Right) The fit for the correlated case, with ¢(x| f) constructed
using statistically linearised smoothing. In blue is the ground truth (line) with one standard deviation of groundtruth process noise
(shaded). In red is ¢(f) (dark line) with one standard deviation of function uncertainty (shaded, dark), and of function uncertainty and
process noise estimate (shaded, light); dots and error bars show inducing points. The faint blue dots show the observed pairs (yz, y¢+1)-
The correlated approach has much better calibrated posterior uncertainty.

consistent, i.e.

T
»Cv = -7:11 + Z)\Z(Et+1[$} — Et[At$ + th

t=1

+ ) t(Li(Bogafor '] — E(A + +b) (A + b)) T] = Q)

wherein E,[] = [ -g(x; = x)dz. Then forming an explicit
recursion for the augmented parameter set, we find
Q' =(RLi+Q ™), A =QQ'E, [Wafiix)}
be = Q:Q 'Erfpuy(x)] — Aepte — Qe
Li_1 = A LA — g—’;’:,At,l = A (A + 2L:bs) + 2‘2f:

which should be initialised with L; = 0, A\; = 0. Note that
the part of this which depends only on preceding values is
identical to the SLF.

This shows that no additional free parameters are needed,
other than the initial state prior and g(v)’s parameters. In
discrete time, this reduces the number of parameters from
O(TD?) to O(M?D). The importance of the reduction of
parameters is greater in continuous time, where the number
of latent states may be arbitrarily larger than the number of
observations 7.

However, this method comes with substantial computational
cost (due to the derivatives required) and may be difficult to
use in practice, due to issues such as local optima. A sensible
relaxation is to replace this optimal smoothing algorithm
with some other, e.g. from Table 1.

4. Experiments

One-dimensional illustration We consider discrete time
dynamics generated by a 1D ’kink’ function (see Figure 2),
which generates oscillating trajectories with high observa-
tion noise and modest process noise (Q = 0.052, R = 0.8).

f(z) = 0.8+ (z +0.2) (1 - H%p(_%))

Learning is hard here, due to the large observation noise.
We fix the observation model to the groundtruth, and see
that the MF model attributes all the uncertainty to process
noise, whereas the correlated model attributes most of the
uncertainty to f.

Ball-beam We use the ball-beam dataset from (De Moor,
2006).! We train on the first half of the observations using
D = 4, M = 100, and evaluate the (VI-optimal) analytic
one-step prediction. The observation noise is fixed to fo-
cus on the latent part of the model, where the differences
lie. The SLF approach shows promising performance, with
comparable RMSE but better NLPP.

Table 2. Training objective and one step predictive test evaluation
for the two methods. Lower is better.

METHOD TRAINNVFE RMSE NLPP
MF -0.2381 0.1341 -0.8676
SLF -4.6209 0.1355 -1.0795

5. Conclusions and further work

We have shown that ignoring key correlations in the varia-
tional approximation biases the process noise larger, reduc-
ing predictive power, and that we can introduce correlation
whilst also improving the scalability. We show empirical ev-
idence that such non-parametric state inference methods can
perform comparable to a fully parameterised MF method.
Future work would include a more thorough empirical inves-
tigation, and exploring non-parametric methods which break
the linearisation constraint, e.g. the particle filter/smoother.

"For reproducibility, the dataset is ‘Data of the ball-and-beam
setup in STADIUS’, section ‘Mechanical Systems’, code [96-004].
Two states are initialised equal to y and u, and the others as their
first difference. We use 10 posterior samples for the SLF method,
and optimise with Adam.
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