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Why learn with distributed data?

« Data Is often distributed across many devices / locations
« User data on mobile phones

« Large institutional databases e.g. medical records in hospitals
« Not P2P

« Communication efficiency is important (big data, low
power, low bandwidth)

* Privacy Is important — can we get away without asking for
user data?



Talk Outline

1. Motivations and background
« Threat models
« Homomorphic encryption
« Definition and core challenges
2. SGD-inspired approaches
 Vanilla SGD
- Federated Averaging
3. Bayesian federated learning
« Partitioned Variational Inference

4. Improving security and privacy

« Secure Multi-Party Computation
 Differential Privacy
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. Learn a global-model with parameters 8 efficiently, securely and fairly from private data

« We will make these terms more precise...



Threat 1 — eavesdropper
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Threat 2 — an adversarial client




Threat 3 — a curious server
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Threat 4.1 — an end user
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Threat 4.2 — training observations
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|[deas from cryptography

» Related secure computation problems have been studied since the
30s

« We could adapt the earliest attempt to our case with
ftrain = max(e(k_l);x)
* One client with g-bit feature x

« Asymmetric cipher on n-bit integers:
« server and client can encrypt with E(+)
« but only the server can decrypt with D(-)

* Need to send n + (29 + 1)5 + 1 bits, three rounds of communication

A. C. Yao, "Protocols for secure computations," 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), Chicago, IL, USA, 1982, pp. 160-164.



Homomorphic encryption

« How far can we get without letting the server decrypt?
* Rough sketch of protocol:

« Clients encrypt features and send to server

« Server runs training algorithm on ciphertext
« Server sends model to clients

« Clients decrypt model and return it to server

« This would guarantee security against:
« T1 — eavesdropper
« T3 - curious server

« But we need the ciphertext equivalent of plaintext operations...



Towards homomorphic encryption: ElGamal

ElGamal is based on a cyclic group G of order g with generator g
i.e. elements of G are 1,g, g%, ..., 9971
Public key: (G,q,g,h = g"%) Private key: k

Encryption function: draw a random r from {0:q — 1} and do
x—= (g, x-h")

Decryption function: g™ = A" so g™ = k=" . Hence do
(x-h)-(gNI*=x-(-hT)=x
As long as G satisfies certain properties (Decisional Diffie Hellman

assumption), it will be hard to get any information on x from the
public key and ciphertext.



Towards homomorphic encryption: ElGamal

ElGamal is based on a cyclic group G of order g with generator g
i.e. elements of G are 1,g, g%, ..., 9971
Public key: (G,q,g,h = g"%) Private key: k

Encryption function: draw a random r from {0:q — 1} and do
x—= (g, x-h")

EQx) - E(xp) = (g™, %1 - h™) - (g2, %2 - h"2) = (™72, (x1 - x2) - K1772) = E(x1 - x3)

« We can do additions or multiplications without decrypting, but not
both (“partially homomorphic”)

* (And we need the same secrete key across clients)



Fully homomorphic encryption

« FHE exists with some limitations on accuracy
* Need polynomial approximations to e.g. activation functions

« But it slows down computations substantially

« Two days for binary classification by logistic regression (3 vs 8
MNIST)

Table 2 Running 10-fold cross-validation on compressed MNIST
dataset with 1500 samples and 196 features

Training method  # iterations  Avg. training  Avg. Awvg. AUC
lime AUC  (unencrypted)
GO + o 0 48.76 h 0974 0977

Chen, H., Gilad-Bachrach, R., Han, K. et al. Logistic regression over encrypted data from fully homomorphic encryption. BMC Med Genomics 11, 81 (2018)



Federated learning

“Federated learning is a machine learning setting where multiple entities
(clients) collaborate in solving a machine learning problem, under the coordination
of a central server or service provider. Each client’s raw data is stored locally and
not exchanged or transferred; instead, focused updates intended for immediate
aggregation are used to achieve the learning objective.”

Kairouz, P.,, McMahan, H. B., et al. Advances and Open Problems in Federated Learning (2018)



Core Challenges

* Expensive communication
e Statistical heterogeneity (non-IID splits)
e Systems heterogeneity (clients dropping out)

* Privacy concerns

Li, T., Sahu, A. K., Talwalkar, A., Smith, V., Federated Learning: Challenges, Methods and Future Directions (2019)
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Vanilla SGD

At Global Server, iteration i:
Send w® to a client m
Receive Aw,,, from client

wltD  w® 4+ Aw,

At client m:
Receive w®

Return Aw,, = —nV#,, (w®)

Core Challenges

1. Expensive communication

2. Statistical heterogeneity (non-IID splits)

3. Systems heterogeneity (clients dropping out)
4. Privacy concerns

* Not parallelised: slow
e Communication-inefficient



Parallelised SGD

At Global Server, iteration i:
Choose random subset of clients C
Send w® to each client € C
Receive Aw,,, from each client

w* D« w® 4 Yimec AW

At client m:
Receive w®
Return Aw,, = —nV#,, (w®)

Core Challenges

1. Expensive communication

2. Statistical heterogeneity (non-IID splits)

3. Systems heterogeneity (clients dropping out)
4. Privacy concerns

e Parallelised
e Communication-inefficient



Core Challenges
. 1. Expensive communication
Fe d e rate d AVG ra gl n g 2. Statistical heterogeneity (non-IID splits)
3. Systems heterogeneity (clients dropping out)
4. Privacy concerns

At Global Server, iteration i:
Choose random subset of clients C
Send w® to each client € C

Update w,,, from each clientm € C
w(HD) ¢ yM_ Ty, * Communication-efficient

n

e Parallelised

At client m:
Receive w « w(®
Over E epochs, split into minibatches:
w« w —nVe,, (w)

Return w
McMahan et al., "Communication-Efficient Learning of Deep Networks from Decentralized Data," AISTATS 2017



Core Challenges
. 1. Expensive communication
Fe d e rate d AVG ra gl ﬂ g 2. Statistical heterogeneity (non-IID splits)
3. Systems heterogeneity (clients dropping out)
4. Privacy concerns

CIFAR-10
1.0 T T T T 1
0.8 =
> A, TS T . )
£ 0.6 AR i Table 3: Number of rounds and speedup relative to baseline
g I SGD to reach a target test-set accuracy on CIFAR10. SGD
8 04 FedAvg, 7=0.05 used a minibatch size of 100. FedSGD and FedAvg used
FedAvg, n=0.15 . .
— Fedavg, 1=025 C' = 0.1, with FedAvg using &/ = 5 and B = 50.
02 L FedSGD, »=0.45 |
) | FedSGD, njU.G
- | | | - Feds6D.n=07 Acc. 80% 82% 85%
0 500 1000 1500 2000 2500 3000 SGD 18000 (—) 31000 (—) 99000 (—)
Communication Rounds FEDSGD 3750 (4.8x) 6600 (4.7x) N/A (—)
FEDAVG 280 (64.3x%) 630 (49.2x) 2000 (49.5x)

Figure 4: Test accuracy versus communication for the CI-
FAR10 experiments. FedSGD uses a learning-rate decay
of 0.9934 per round; FedAvg uses B = 50, learning-rate
decay of 0.99 per round, and £ = 5.

McMahan et al., "Communication-Efficient Learning of Deep Networks from Decentralized Data," AISTATS 2017



Core Challenges
. 1. Expensive communication
Fe d e rate d AVG ra gl n g 2. Statistical heterogeneity (non-IID splits)
3. Systems heterogeneity (clients dropping out)
4. Privacy concerns

At Global Server, iteration i:

Choose random subset of clients C * Hyperparameter tuning
Send w® to each client € C required
Update w,, from each clientm € C * No convergence
wtD) i T, guarantees
e Can diverge (non-IID)!
At client m: * Compression of messages

Receive w « w® possible (Konecny et al., 2017)

Over E epochs, split into minibatches: * Deployed at scale!
_ (Bonawitz et al., 2019)
wew—nVe, (w)

McMahan et al., "Communication-Efficient Learning of Deep Networks from Decentralized Data," AISTATS 2017
Konecny et al., “Federated Learning: Strategies for Improving Communication Efficiency”, 2017
Bonawitz et al., “Towards Federated Learning at Scale: System Design”, SysML 2019

Return w
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Bayesian FL

Core Challenges
1. Expensive communication
2. Statistical heterogeneity (non-IID splits)

3. Systems heterogeneity (clients dropping out)

4. Privacy concerns
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Bayesian FL

* SGD < Global VI

* Variational methods
» Stochastic natural-gradient EP
* Partitioned VI
 Store client states locally

* Bayesian Committee Machine
* Communicate once

Core Challenges

1. Expensive communication

2. Statistical heterogeneity (non-IID splits)

3. Systems heterogeneity (clients dropping out)
4. Privacy concerns
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Hasenclever et al., “Distributed Bayesian Learning with Stochastic Natural Gradient Expectation Propagation and the Posterior Server,” JMLR 2017
Bui et al., “Partitioned Variational Inference: A unified framework encompassing federated and continual learning,” 2018
Tresp, “A Bayesian committee machine,” Neural computation 2000



Partitioned VI

Core Challenges

1. Expensive communication

2. Statistical heterogeneity (non-IID splits)

3. Systems heterogeneity (clients dropping out)
4. Privacy concerns
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Bui et al., “Partitioned Variational Inference: A unified framework encompassing federated and continual learning,” 2018



Partitioned VI

At Global server; iteration i:

Choose random subset of clients C
Send g ¢)(W) to each client € C

Receive At,,,(w) from each client

(l+ )(W) < q(p)(W) [Imec At (W)

At client m:
: (new) dy (W)p (y mlW, X’m)
qub}"n ’Cfc <Q¢* ( ) tggld) (W)

compare with:

min KL (g4(w)|[p(w

Y, X))

¢ Bui et al., “Partitioned Variational Inference: A unified framework encompassing federated and continual learning,” 2018

po(W) 11 tm(W)

Core Challenges

1. Expensive communication

2. Statistical heterogeneity (non-IID splits)

3. Systems heterogeneity (clients dropping out)
4. Privacy concerns

Global model
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Partitioned VI

At Global server; iteration i:

Choose random subset of clients C
Send q¢)(w) to each client € C

Receive At,, (W) from each client

(l+ )(W) < C[ (W) [Imec At (W)

At client m:
new m 7Xm
min K [ g8 (w)| |22l W, Xn)
# te ) (w)
new(w)
Return At,,(w) = Old -

Bui et al., “Partitioned Variational Inference: A unified framework encompassing federated and continual learning,” 2018

Core Challenges

1. Expensive communication

2. Statistical heterogeneity (non-IID splits)

3. Systems heterogeneity (clients dropping out)
4. Privacy concerns
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Partitioned VI
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Figure 5: Performance on the test set in the federated MNIST experiment with a non-iid distribution of training points across ten workers, i.e. each worker has access
to digits of only one class. ' : P - - . . o,
Bui et al., “Partitioned Variational Inference: A unified framework encompassing federated and continual learning,” 2018
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Secure Multi-Party Computation

* “Parties jointly compute a
function over inputs while
keeping those inputs secure”

* Homomorphic Encryption
* Secure Aggregation

* Adds communication rounds &
computational cost



Secure Multi-Party Computation

Secure Aggregation

* “Parties jointly compute a * Combines cryptographic techniques
function over inputs while * Secret sharing, key agreement,
keeping those inputs secure” authenticated encryption, signature

« Homomorphic Encryption scheme, public key infrastructure, ...

* Secure Aggregation * Protects against honest-but-curious
server, adversarial server

* Adds communication rounds & * (Up to) 4 rounds of communication

computational cost * Cubic computational cost for server,

qguadratic for clients

Bonawitz et al., "Practical Secure Aggregation for Privacy-Preserving Machine Learning," 2017



Differential Privacy

Definition 2. A randomized function KC gives e-differential privacy if for all
data sets Dy and Dy differing on at most one element, and all S C Range(K),

Pr[KC(Dy) € S] < exp(e) x Pr[KC(D2) € S] (+8) (1)

e “Learn as much as possible from a group while learning as little as
possible about any individual in it”

Dwork, “Differential Privacy,” 2016



Differential Privacy

Definition 2. A randomized function KC gives e-differential privacy if for all
data sets D1 and Do differing on at most one element, and all S C Range(K),

Pr[K(D;) € S] <exp(e) x Pr[K(D2) € S] (+6) (1)

e “Learn as much as possible from a group while learning as little as
possible about any individual in it”

* Achieved by adding (Gaussian) noise
* Global vs Local vs Hybrid
* Combining with Secure MPC

Dwork, “Differential Privacy,” 2016



Meta-learning and Federated learning

* Key assumption so far:
learning a single global model

* What if personalised local
models are better?



Meta-learning and Federated learning

* Key assumption so far:

learning a single global model — meta-learning
9 ---- |learning/adaptation
* What if personalised local VL3
models are better? VLo .
V,Cl ,,,,, ° 93
* Locally fine-tune: cf MAML R

Finn et al., “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,” ICML 2017



Core Challenges
1. Expensive communication
F U t U re WO r k 2. Statistical heterogeneity (non-IID splits)
3. Systems heterogeneity (clients dropping out)
4. Privacy concerns

* Designing algorithms that tackle ¢ Modelling systems
all core challenges heterogeneity

e Communication-accuracy Pareto ¢ Beyond supervised learning
frontier

- Differential Privacy for FL * Benchmarks
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