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Why learn with distributed data?

• Data is often distributed across many devices / locations
• User data on mobile phones

• Large institutional databases e.g. medical records in hospitals

• Not P2P

• Communication efficiency is important (big data, low 
power, low bandwidth)

• Privacy is important – can we get away without asking for 
user data?
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• Learn a global model with parameters 𝜃 efficiently, securely and fairly from private data

• We will make these terms more precise…



Threat 1 – eavesdropper



Threat 2 – an adversarial client



Threat 3 – a curious server

                   



Threat 4.1 – an end user

             



Threat 4.2 – training observations



             

                   



Ideas from cryptography

• Related secure computation problems have been studied since the 
80s

• We could adapt the earliest attempt to our case with

𝑓train = max(𝜃 𝑘−1 , 𝑥)

• One client with 𝑞-bit feature 𝑥

• Asymmetric cipher on 𝑛-bit integers: 

• server and client can encrypt with 𝐸(∙)

• but only the server can decrypt with 𝐷 ∙

• Need to send 𝑛 + 2𝑞 + 1 𝑛

2
+ 1 bits, three rounds of  communication

A. C. Yao, "Protocols for secure computations," 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), Chicago, IL, USA, 1982, pp. 160-164.



Homomorphic encryption

• How far can we get without letting the server decrypt?

• Rough sketch of  protocol:
• Clients encrypt features and send to server

• Server runs training algorithm on ciphertext 

• Server sends model to clients

• Clients decrypt model and return it to server

• This would guarantee security against:
• T1 – eavesdropper

• T3 – curious server

• But we need the ciphertext equivalent of  plaintext operations…



Towards homomorphic encryption: ElGamal

• ElGamal is based on a cyclic group 𝐺 of  order 𝑞 with generator 𝑔

• i.e. elements of  𝐺 are 1, 𝑔, 𝑔2, … , 𝑔𝑞−1

• Public key: (𝐺, 𝑞, 𝑔, ℎ = 𝑔𝑘) Private key: 𝑘

• Encryption function: draw a random 𝑟 from {0: 𝑞 − 1} and do 
𝑥 → (𝑔𝑟 , 𝑥 ∙ ℎ𝑟)

• Decryption function: 𝑔𝑟
𝑘
= ℎ𝑟 so 𝑔𝑟

𝑞−𝑘
= ℎ−𝑟 . Hence do

𝑥 ∙ ℎ𝑟 ∙ 𝑔𝑟 𝑞−𝑘 = 𝑥 ∙ (ℎ𝑟∙ ℎ−𝑟) = 𝑥

• As long as 𝐺 satisfies certain properties (Decisional Diffie Hellman 
assumption), it will be hard to get any information on 𝑥 from the 
public key and ciphertext.



Towards homomorphic encryption: ElGamal

• ElGamal is based on a cyclic group 𝐺 of  order 𝑞 with generator 𝑔

• i.e. elements of  𝐺 are 1, 𝑔, 𝑔2, … , 𝑔𝑞−1

• Public key: (𝐺, 𝑞, 𝑔, ℎ = 𝑔𝑘) Private key: 𝑘

• Encryption function: draw a random 𝑟 from {0: 𝑞 − 1} and do 
𝑥 → (𝑔𝑟 , 𝑥 ∙ ℎ𝑟)

𝐸 𝑥1 ∙ 𝐸 𝑥2 = 𝑔𝑟1 , 𝑥1 ∙ ℎ
𝑟1 ∙ 𝑔𝑟2 , 𝑥2 ∙ ℎ

𝑟2 = 𝑔𝑟1+𝑟2 , 𝑥1 ∙ 𝑥2 ∙ ℎ𝑟1+𝑟2 = 𝐸(𝑥1 ∙ 𝑥2)

• We can do additions or multiplications without decrypting, but not 
both (“partially homomorphic”)
• (And we need the same secrete key across clients)



Fully homomorphic encryption

• FHE exists with some limitations on accuracy 

• Need polynomial approximations to e.g. activation functions

• But it slows down computations substantially

• Two days for binary classification by logistic regression (3 vs 8 
MNIST)

Chen, H., Gilad-Bachrach, R., Han, K. et al. Logistic regression over encrypted data from fully homomorphic encryption. BMC Med Genomics 11, 81 (2018)



Federated learning

“Federated learning is a machine learning setting where multiple entities
(clients) collaborate in solving a machine learning problem, under the coordination
of a central server or service provider. Each client’s raw data is stored locally and
not exchanged or transferred; instead, focused updates intended for immediate
aggregation are used to achieve the learning objective.”

Kairouz, P., McMahan, H. B., et al. Advances and Open Problems in Federated Learning (2018)



Core Challenges

• Expensive communication

• Statistical heterogeneity (non-IID splits)

• Systems heterogeneity (clients dropping out)

• Privacy concerns

Li, T., Sahu, A. K., Talwalkar, A., Smith, V., Federated Learning: Challenges, Methods and Future Directions (2019)



Objective

min
𝑤

𝑓 𝑤

Conventional setup:

𝑓 𝑤 =
1

𝑛
෍

𝑖=1

𝑛

𝑓𝑖 𝑤 , 𝑓𝑖 𝑤 is e. g. loss on each datapoint

Federated learning:

𝑓 𝑤 = ෍

𝑚=1

𝑀
𝑛𝑚
𝑛
𝐹𝑚 𝑤 , 𝐹𝑚 𝑤 ≔

1

𝑛𝑚
෍

𝑖∈𝑃𝑚

𝑓𝑖 𝑤



Talk Outline

1. Motivations and background
• Threat models

• Homomorphic encryption

• Definition and core challenges

2. SGD-inspired approaches
• Vanilla SGD

• Federated Averaging

3. Bayesian federated learning
• Partitioned Variational Inference

4. Improving security and privacy
• Secure Multi-Party Computation

• Differential Privacy



Vanilla SGD

At Global Server, iteration 𝑖:

Send 𝑤(𝑖) to a client 𝑚

Receive Δ𝑤𝑚 from client

𝑤(𝑖+1) ← 𝑤(𝑖) + Δ𝑤𝑚

At client 𝑚:

Receive 𝑤(𝑖)

Return Δ𝑤𝑚 = −𝜂෡∇ℓ𝑚 𝑤 𝑖

• Not parallelised: slow

• Communication-inefficient

Core Challenges
1. Expensive communication
2. Statistical heterogeneity (non-IID splits)
3. Systems heterogeneity (clients dropping out)
4. Privacy concerns



Parallelised SGD

At Global Server, iteration 𝑖:

Choose random subset of clients 𝐶

Send 𝑤(𝑖) to each client ∈ 𝐶

Receive Δ𝑤𝑚 from each client

𝑤(𝑖+1) ← 𝑤(𝑖) + σ𝑚∈CΔ𝑤𝑚

At client 𝑚:

Receive 𝑤(𝑖)

Return Δ𝑤𝑚 = −𝜂෡∇ℓ𝑚 𝑤 𝑖

• Parallelised

• Communication-inefficient

Core Challenges
1. Expensive communication
2. Statistical heterogeneity (non-IID splits)
3. Systems heterogeneity (clients dropping out)
4. Privacy concerns



Federated Averaging

At Global Server, iteration 𝑖:

Choose random subset of clients 𝐶

Send 𝑤(𝑖) to each client ∈ 𝐶

Update 𝑤𝑚 from each client 𝑚 ∈ 𝐶

𝑤(𝑖+1) ← σ𝑚=1
𝑀 𝑛𝑚

𝑛
𝑤𝑚

At client 𝑚:

Receive w ← 𝑤(𝑖)

Over 𝐸 epochs, split into minibatches:

𝑤 ← 𝑤 − 𝜂෡∇ℓ𝑚 𝑤

Return 𝑤

• Parallelised

• Communication-efficient

Core Challenges
1. Expensive communication
2. Statistical heterogeneity (non-IID splits)
3. Systems heterogeneity (clients dropping out)
4. Privacy concerns

McMahan et al., "Communication-Efficient Learning of Deep Networks from Decentralized Data," AISTATS 2017



Federated Averaging
Core Challenges
1. Expensive communication
2. Statistical heterogeneity (non-IID splits)
3. Systems heterogeneity (clients dropping out)
4. Privacy concerns

McMahan et al., "Communication-Efficient Learning of Deep Networks from Decentralized Data," AISTATS 2017



Federated Averaging

• Hyperparameter tuning 
required

• No convergence 
guarantees
• Can diverge (non-IID)!

• Compression of messages 
possible (Konečný et al., 2017)

• Deployed at scale! 
(Bonawitz et al., 2019)

Core Challenges
1. Expensive communication
2. Statistical heterogeneity (non-IID splits)
3. Systems heterogeneity (clients dropping out)
4. Privacy concerns

McMahan et al., "Communication-Efficient Learning of Deep Networks from Decentralized Data," AISTATS 2017
Konečný et al., “Federated Learning: Strategies for Improving Communication Efficiency”, 2017
Bonawitz et al., “Towards Federated Learning at Scale: System Design”, SysML 2019

At Global Server, iteration 𝑖:

Choose random subset of clients 𝐶

Send 𝑤(𝑖) to each client ∈ 𝐶

Update 𝑤𝑚 from each client 𝑚 ∈ 𝐶

𝑤(𝑖+1) ← σ𝑚=1
𝑀 𝑛𝑚

𝑛
𝑤𝑚

At client 𝑚:

Receive w ← 𝑤(𝑖)

Over 𝐸 epochs, split into minibatches:

𝑤 ← 𝑤 − 𝜂෡∇ℓ𝑚 𝑤

Return 𝑤
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Bayesian FL
Core Challenges
1. Expensive communication
2. Statistical heterogeneity (non-IID splits)
3. Systems heterogeneity (clients dropping out)
4. Privacy concerns



Bayesian FL
Core Challenges
1. Expensive communication
2. Statistical heterogeneity (non-IID splits)
3. Systems heterogeneity (clients dropping out)
4. Privacy concerns

• SGD ↔ Global VI

• Variational methods
• Stochastic natural-gradient EP

• Partitioned VI

• Store client states locally

• Bayesian Committee Machine
• Communicate once

Hasenclever et al., “Distributed Bayesian Learning with Stochastic Natural Gradient Expectation Propagation and the Posterior Server,” JMLR 2017
Bui et al., “Partitioned Variational Inference: A unified framework encompassing federated and continual learning,” 2018
Tresp, “A Bayesian committee machine,” Neural computation 2000



Partitioned VI
Core Challenges
1. Expensive communication
2. Statistical heterogeneity (non-IID splits)
3. Systems heterogeneity (clients dropping out)
4. Privacy concerns

Bui et al., “Partitioned Variational Inference: A unified framework encompassing federated and continual learning,” 2018



Partitioned VI

At Global server, iteration 𝑖:

Choose random subset of clients 𝐶

Send 𝑞𝜙
𝑖
(𝑤) to each client ∈ C

Receive Δ𝑡𝑚 𝑤 from each client

𝑞𝜙
𝑖+1

(𝑤) ← 𝑞𝜙
𝑖
(𝑤)ς𝑚∈𝐶 Δ𝑡𝑚 𝑤

At client 𝑚:

Core Challenges
1. Expensive communication
2. Statistical heterogeneity (non-IID splits)
3. Systems heterogeneity (clients dropping out)
4. Privacy concerns

Bui et al., “Partitioned Variational Inference: A unified framework encompassing federated and continual learning,” 2018



Partitioned VI

At Global server, iteration 𝑖:

Choose random subset of clients 𝐶

Send 𝑞𝜙
𝑖
(𝑤) to each client ∈ C

Receive Δ𝑡𝑚 𝑤 from each client

𝑞𝜙
𝑖+1

(𝑤) ← 𝑞𝜙
𝑖
(𝑤)ς𝑚∈𝐶 Δ𝑡𝑚 𝑤

At client 𝑚:

Return Δ𝑡𝑚 𝑤 =
𝑞𝜙∗
new 𝑤

𝑞𝜙
old 𝑤

Core Challenges
1. Expensive communication
2. Statistical heterogeneity (non-IID splits)
3. Systems heterogeneity (clients dropping out)
4. Privacy concerns

Bui et al., “Partitioned Variational Inference: A unified framework encompassing federated and continual learning,” 2018



Partitioned VI

Bui et al., “Partitioned Variational Inference: A unified framework encompassing federated and continual learning,” 2018
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Secure Multi-Party Computation

• “Parties jointly compute a 
function over inputs while 
keeping those inputs secure”
• Homomorphic Encryption

• Secure Aggregation

• Adds communication rounds & 
computational cost



Secure Multi-Party Computation

• “Parties jointly compute a 
function over inputs while 
keeping those inputs secure”
• Homomorphic Encryption

• Secure Aggregation

• Adds communication rounds & 
computational cost

Secure Aggregation

• Combines cryptographic techniques
• Secret sharing, key agreement, 

authenticated encryption, signature 
scheme, public key infrastructure, …

• Protects against honest-but-curious 
server, adversarial server

• (Up to) 4 rounds of communication

• Cubic computational cost for server, 
quadratic for clients

Bonawitz et al., "Practical Secure Aggregation for Privacy-Preserving Machine Learning," 2017



Differential Privacy

• “Learn as much as possible from a group while learning as little as 
possible about any individual in it”

( + 𝜹 )

Dwork, “Differential Privacy,” 2016



Differential Privacy

• “Learn as much as possible from a group while learning as little as 
possible about any individual in it”

• Achieved by adding (Gaussian) noise

• Global vs Local vs Hybrid

• Combining with Secure MPC

Dwork, “Differential Privacy,” 2016

( + 𝜹 )



Meta-learning and Federated learning

• Key assumption so far: 
learning a single global model

• What if personalised local 
models are better?



Meta-learning and Federated learning

• Key assumption so far: 
learning a single global model

• What if personalised local 
models are better?

• Locally fine-tune: cf MAML

Finn et al., “Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks,” ICML 2017



Future work

• Designing algorithms that tackle 
all core challenges

• Communication-accuracy Pareto 
frontier

• Differential Privacy for FL

• Modelling systems 
heterogeneity

• Beyond supervised learning

• Benchmarks

Core Challenges
1. Expensive communication
2. Statistical heterogeneity (non-IID splits)
3. Systems heterogeneity (clients dropping out)
4. Privacy concerns
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